Mobile Application Development

Lesson 5

Dr. Syed Asim Jalal
Department of Computer Science
University of Peshawar

Activity and Activity Life Cycle

Activity

What is an Activity?

[An Activity is the screen representation of any application in Android J

— It serves as an entry point for user’s interaction.

— Each activity has a layout file where you can place your Ul.

FORGOT PASSWORD?

CREATE NEW FACEBOOX ACCOUNT

— An application can have different activities.

An activity represents a single screen in your app with an
interface the user can interact with.

For example, an email app might have one activity that shows a
list of new emails, another activity to compose an email, and
another activity for reading individual messages.

Your app is a collection of activities that you either create
yourself, or that you reuse from other apps.

Although the activities in your app work together to form a
cohesive user experience in your app, each ACTIVITY is
independent of the others.

You can call other activities of other apps from one
activity

Your app

Camera app

Email app

Creating activities

 To implement an activity in your app, do the
following:

— Implement a user interface for that activity.
— Create an activity Java class.
— Declare that new activity in the app manifest.

 When you create a new project for your app, or add a new
activity to your app, in Android Studio (with File > New >
Activity), template code for each of these tasks is provided for
you.

e Activities are subclasses of the Activity class, or one of its
subclasses. When you create a new project in Android Studio,
your activities are, by default, subclasses of the
AppCompatActivity class.

e The AppCompatActivity class is a subclass of Activity that lets
you to use up-to-date android app features while still enabling
your app to be compatible with devices running older versions
of Android.

Here is a skeleton subclass of AppCompatActivity:

public class MainActivity extends AppCompatActivity {
@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

e The first task for you in your activity subclass is to
implement the standard activity lifecycle callback
methods (such as OnCreate()) to handle the state
changes for your activity.

 These state changes include things such as when the
activity is created, stopped, resumed, Or destroyed.

The one required callback your app must implement is the onCreate()
method. The system calls this method when it creates your activity, and all
the essential components of your activity should be initialized here. Most

iImportantly, the OnCreate() method calls setContentView() to create the
primary layout for the activity.

You typically define the user interface for your activity in one
or more XML layout files.

When the setContentView() method is called with the path to
a layout file, the system creates all the initial views from the
specified layout and adds them to your activity.

This is often referred to as inflating the layout.

Implement a user interface of an
Activity

— The user interface for an activity is provided by a hierarchy of
views, which controls a particular space within the activity's
window and can respond to user interaction.

— The most common way to define a user interface using views

is with an XML layout file stored as part of your app's
resources.

— Defining your layout in XML enables you to maintain the

design of your user interface separately from the source code
that defines the activity's behavior.

* Declare the activity in the manifest

— Each activity in your app must be declared in the Android
app manifest with the <activity> element, inside
<application> .

— When you create a new project or add a new activity to
your project in Android Studio, your manifest is created or
updated to include skeleton activity declarations for each
activity. Here's the declaration for the main activity.

<activity android:name=".MainActivity" =
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" /=
</intent-filter>
</activity=>

Add more activities to your project

— You can add new activities to your project in Android
Studio with the File > New > Activity menu.

— Choose the activity template you want to use, or open the
Gallery to see all the available templates.

 Android Studio provides these three things for
each new activity in your app:

1. A Java file for the new activity with a skeleton class
definition and onCreate() method. The new activity, like
the main activity, is a subclass of AppCompatActivity.

2. An XML file containing the layout for the new activity. Note
that the setContentView() method in the activity class
inflates this new layout.

3. An additional <activity> element in the Android manifest
that specifies the new activity. The second activity
definition does not include any intent filters.

Activity Life Cycle

e Typically, one activity in an app is specified as the
"main activity”, which is presented to the user
when launching the application for the first time.
Each activity can then start other activities in order
to perform different actions.

e Each time a new activity starts, the previous activity
is stopped, but the system preserves the activity in a

stack (the "back stack").

e When the user is done with the current activity and
presses the Back button, it is popped from the stack
(and destroyed) and the previous activity resumes.

e When an activity is stopped because a new activity starts, the
first activity is notified of that change with the activity's
lifecycle callback methods.

 The Activity lifecycle is the set of states an activity can be in
any particular instance of time, from when it is first created,
to each time it is stopped or resumed, to when the system
destroys it.

 The lifecycle is the set of states an activity can
be in during its entire lifetime, from when it's
created to when it's destroyed and the system
reclaims its resources.

e As a user navigates between activities in your
app (as well as into and out of your app),
activities transition between different states in

their lifecycles.

e Each stage in an activity's lifecycle has a
corresponding callback method:

— onCreate(), onStart(), onPause(), and so on.

— When an activity changes state, the associated
callback method is invoked.

— You've already seen one of these methods:
onCreate().

— By overriding any of the lifecycle callback methods in
your Activity classes, you can change the activity's
default behavior in response to user or system
actions.

 The activity state can also change in response to
device-configuration changes, for example when
the user rotates the device from portrait to
landscape.

e After such changes the activity is destroyed and
recreated in its default state, and the user might
lose information that they've entered in the
activity.

 To avoid confusing your users, it's important that
you develop your app to prevent unexpected
data loss, by saving all the changes.

Activity life Cycle diagram

D Apps with higher
Usernavigates App process — ” prloritys —
to the activity killed need memory
User navigates
to the activity
Activity Activity Activity
- (L onPause onsto onDestroy()
R onCreate() onStart() onResume() running { p() y R b o
Another activity
comes into
the foreground

onRestart()

Observing Activity Life Cycle

* In order to understand the Activity Life Cycle and the
different states an activity can pass through, we can
develop an app where we explicitly implement the
relevant function for responsible for each state and

display some message.

* Then we push the activity to change states by
opening other apps and killing this app to observe
the messages.

e These functions are

— onCreate(), onStart(), onResume(), onPause(),
onStop(), onDestroy()

An example to understand activity states using Log Messages.

Create

In this state, the activity is created.

Resumed (running state)

In this state, the activity is in the
foreground and the user can interact
with it.

Stopped

In this state, the activity is completely
hidden and not visible to the user. it is
considered to be in the background.

@0verride

protected void onCreate(Bundle savedInstanceState) {|
super,onCreate(savedInstanceState);
Log.i(TAG, “onCreate Called"):

a0verride

protected void onStart() {
super.onStart();
Log.i(TAG, “onStart Called");

@verride

protected void onResume() {
super.onResume() ;
Log.i(TAG, “onResume Called");

@verride

protected void onPause() {
super.onPause();
Log.i(TAG, “onPause Called");

@0verride

protected void onStop() {
super.onStop();

, Log.i(TAG, "onStop Called");

@0verride

protected void onDestroy() {
super.onDestroy();
Log.i(TAG, “onDestroy Called");

Paused

Activity is partially obscured by
another activity. The other activity
that's in the foreground is semi-
transparent.

Destroy

In this case the activity is destroyed
and removed from the memory

Example 1

We implement one example where we display
one Toast message in each activity life cycle
function to observe the activity life cycle states of
every function.

These functions are implemented in Super class
Activity Class.

We therefore implement these classes, and also
execute the execute the original functions in the
super class by writing the keyword super.

E.g. super.onStart().

public class Mainfctivity extends Lpplompatictivity |

EQverride

protected void onCreate (Bundle savedInstanceState) |
super.onCreate (savedInstancesState) ;
setlontentView (R. layout.activity main);

protected wvoid onStart()

{
super.cnitart () ;

protected wvoid onBesume () |
super.onBesume () »

protected woid gnPause() |
Super.

‘m omPawse(_ ved

} m onCreate (Bundle savedInstanceState) roid
MainActivi m ¢ onResume | |

m onStart () woid
ly at 01/03/2 m applyiverrideConfiguration (Configuration overrideConfigur.. woid
StudioProjed ™ attachBaseContext (Context newbBase) woid
m bindIsolatedService (Intent service, int flags, String .. boolean
m bindService (Intent service, ServiceConnection conn, in.. boolean
m bindService {(Intent service, int flags, Executor execut.. boolean
m checkCallingOrSelfPermisaion (String permission) int

rgcat m checkCallingOrSelfUriPermisgion (Uri uri, int modeFlags) int =

et e S P

E0verride
protected
super

public class Mainfctivity extends Applompatictivity |

vold onCreate (Bundle savedInstanceState) |

onCreate (savedInstanceState) ;

getContentView (R.layout.activity main);
Toast.makeText (context: this, text: "onCreate Function Executed",Toast.LENGTH LONG) .show():

}
protected
{
SUpEer.
Toast
}
protected
SUpEer.
Toast.
}
protected
SUpEer.
Toast.
}
protected
SUpEer.
Toast
}
protected
SUpEer.
Toast.

vold onStart()

onstart() s

.makeText(context: this,

vold onBesume () {
ocnBesume () 7
makeText{ context: this,

vold onPause () {
ocnPause () ;
makeText(context: this,

vold onStop(){
onstop () -

.makeText(context: this,

void onDestrov() |
onbDestrov () s
makeText(context: this,

text:

text:

text:

text:

text:

"onStart Function Executed",Toast.LENGTH LONG) .show():

"onResume Function Executed",Toast.LENGTH LONG) .show(]:

"onPause function is called",Toast.LENGTH LONG) .show():

"onStop Function executed NOW",Toast.LENGTH LONG) .show():

"onDestroy Function is Executed NOW",Toast.LENGTH LONG) .show():

Example 2

This example, displays a Toast message as well as display a log
message.

public class MalnActivity extends ApplompatActivity 1

plverride

protected void onlreate{Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. Layout . activity main);:
Toast.makeText(this, “onCreate Finished" Toast.LENGTH_SHORT).show();
Log.i{"Mainactivity”, “enCreate”) ;|

A

Plverrioe
protected vold onStart() {
super.onstart{):

Bm_uum x & m:.mm-rhva *

8

-

L]

Toast .makeText (this, “onCreate Finished”, Toast.LENGTH_SHORT) .show();:
Leg. i{“Mainactivity™, “onCreate”);

@0verride

protected void onStart() {
super.onStartl);
Toast .makeText [this, “onStart Finished®, Toast.LENGTH_SHORT).show();
Log.i{“Mainactivity™, “enStart™);

@0verride

protected void onResusel() {
super.onftesume() ;
Toast.makeText (this, “osResume Finished",Toast.LENGTH_SHORT),show();
Log. i (“Mainactivity™, “onResume”) ;

B0verride

protected void onPause() {
super.onPausel) ;
Toast .makeText (this, “onPause Finished™, Toast.LENGTH_SHORT).show();
Log. i({“Mainactivity™, "onPause™);

glverride

protected void onStopl) {
super.onStopl);
Toast.makeText (this, "onStop Finished”,Toast.LENGTH_SHORT).show{);
Log. i{"Mainactivity™, “enStop”);

@0verride

protected void onRestart() {
super.onfestart();
Toast.makeText (this, "onRestart Finished™, Toast.LENGTN_SHORT).show();
Log. il{"Mainactivity”, “onRestart”);

@0verride

protected void onDestroy() {
super,onDestroy();
Toast.makeText (this, "onDestroy Finished™, Toast.LENGTH_SHORT).show();
Log. i (“Mainactivity” . “onDestroy”);

}

When the application is first started, onCreate(),
onStart() and onResume() are executed.

Android Emulator - Black_Kinght01:5554

u
ActivityLifecycle

ActivityLifecycle

Log messages which are written in each functions are
also displayed in the log area.

Tnnt -mrem: h."m!tup Fl.n.il-hld" Toast.LENGTN_SHMORT) . showl() ;

Ardrosd Monitor
[il Emulator Black_Kinght01 Android 7.1.1, APY 25 B com. example demouser.activitylifecyche (6943) B
B3 palogoar Monitors «” Verbose B Q-
o] 11-17 12:48:54,842 B943-6943/7 I/art: Not late-enabling -Xcheck: jni [already on)
ﬂ n 11-17 12:48:54.B42 6943-6943/7 W/art: Unexpected CPU variant for X86 using defaults: x86_564
=] 11-17 12:48:54,935 6943-6943/con, exomple. demouser,activitylifecycle W/System: ClassLoader referenced unknown path: /data/a)
o 11-17 12:48:54.957 6943-6943/com. example.demouser.activitylifecycle I/InstantRun: Instant Run Runtise started. Android pacl
T+ 11-17 12:4B8:55.869 6943-6943/com,. example.dempuser.activitylifecycle W/System: Classioader referenced unknown path: /data/a;
(-] 3 11-17 12:48:55.712 6943-6943/con. example.demouser.activitylifecycle W/art: Before Android 4.1, method android.grophics.Por
11-17 12:48:55.341 6943-6943/con. example. dempuser.activitylifecycle IMalnactivity! onCreate
i & 11-17 12:48:55,.348 6943-6043/com, example.demouser.activitylifecycle I/Mainact ivity: onStart

11-17 12:48:55.352 6943-6943/com. example.demouser.activitylifecycle IMainactivity: onResume
B 11-17 127:48:55.438 6943-6959/com. example.demouser.activitylifecycle I/OpenGLRenderer: Initialized EGL, wversion 1.4
11-17 12:48:55.438 6943-6959/com. example.demouser.activitylifecycle D/OpenGLRenderer: Swap behavior 1

B 0:Messages [E Terminal |] Monitor
| imstamt Bun restarted the application. [/ T!uum! no code changes to apply. |/ (Dont show again) (moments ageo)

ActivityLifecycle

ol sime Fininhed

S e e

il Emulator Black_Kinght01 Android 7.1.1, AP1 25 ‘ com.example demouser.activitylifecycle (69431) ..
ia logeat Monitors +* Verbose B

= - =

" W W
= 88 dfe«=08

11-17
11-17
11-17
11-17
11-17
11-17
11-17
11-17
11-17
11-17
1i-17
11-17
11-17

154,842 6943-6943/7 1/art: Mot late-enabling -Xcheck:jni (already om)

B42 6943-6943/7 Wart: Unexpected CPU wvariant for X86 using defaults: =xB6_G64

.935 6943-6943/con. examp le. dembuser.activitylifecycle W/System: Classloader referenced unkndwn path:

957 6943-6943/com, example.demouser.activitylifecycle I/InstantRun: Instant Run Runtime started. Andr
869 6943-6943/com.example.demouser.activitylifecycle W/System: Classloader referenced unknown path:

«212 6943-6943/con. example. dempuser.activitylifecycle wnn. lefnre Android 4.1, method android.graph
. 341 6943-6943/con. example. demouser.activitylifecycle 1/ I 4SLERs] onlreate

348 6943-6943 com. example.dempuser.activitylifecycle IJ'Hiinnctivinr. onstart

<352 B943-6941/con. example. demouser.activitylifecycle I/Mainactivity: onResume

.438 6943-6959/con,. example,demouser.activitylifecycle I/OpenGLRenderer: Initialized EGL, wersion 1.4

438 6943-6959/com.examp le.dempuser.activitylifecycle D/OpenGLRenderer: Swap behavior 1

873 6943-6943/com. example. dempuser.activitylifecycle IMainactivity: onPause

-102 6943-6943/com. example. demouser.activitylifecycle I/Mainactivity: onStop]

RENERNNRRERERR
CooEssacaoEaD
EBECLCORORELES

When the app is restarted.
onCreate() is not executed this time.

When the back button is pressed the app is
destroyed.

-
ActivityLifecycle

When you click the app icon and
restart the app.

	Slide Number 1
	Activity and Activity Life Cycle
	Activity
	Slide Number 4
	Slide Number 5
	Creating activities
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Implement a user interface of an Activity
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Activity life Cycle diagram
	Observing Activity Life Cycle
	An example to understand activity states using Log Messages.
	Example 1
	Slide Number 24
	Slide Number 25
	Example 2
	Slide Number 27
	When the application is first started, onCreate(), onStart() and onResume() are executed.
	Log messages which are written in each functions are also displayed in the log area.
	Slide Number 30
	Slide Number 31
	When the app is restarted. onCreate() is not executed this time.
	When the back button is pressed the app is destroyed.
	When you click the app icon and restart the app.

