
Mobile Application Development

Lesson 5

Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar



Activity and Activity Life Cycle



Activity



• An activity represents a single screen in your app with an 
interface the user can interact with.

• For example, an email app might have one activity that shows a 
list of new emails, another activity to compose an email, and 
another activity for reading individual messages.

• Your app is a collection of activities that you either create 
yourself, or that you reuse from other apps.

• Although the activities in your app work together to form a 
cohesive user experience in your app, each ACTIVITY is 
independent of the others.



You can call other activities of other apps from one 
activity



Creating activities

• To implement an activity in your app, do the 
following:

– Implement a user interface for that activity.
– Create an activity Java class.
– Declare that new activity in the app manifest.

• When you create a new project for your app, or add a new 
activity to your app, in Android Studio (with File > New > 
Activity), template code for each of these tasks is provided for 
you.



• Activities are subclasses of the Activity class, or one of its 
subclasses. When you create a new project in Android Studio, 
your activities are, by default, subclasses of the 
AppCompatActivity class.

• The AppCompatActivity class is a subclass of Activity that lets 
you to use up-to-date android app features while still enabling 
your app to be compatible with devices running older versions 
of Android.



• The first task for you in your activity subclass is to 
implement the standard activity lifecycle callback 
methods (such as OnCreate()) to handle the state 
changes for your activity.

• These state changes include things such as when the 
activity is created, stopped, resumed, or destroyed.

The one required callback your app must implement is the onCreate() 
method. The system calls this method when it creates your activity, and all 
the essential components of your activity should be initialized here. Most 
importantly, the OnCreate() method calls setContentView() to create the 
primary layout for the activity.



• You typically define the user interface for your activity in one 
or more XML layout files.

• When the setContentView() method is called with the path to 
a layout file, the system creates all the initial views from the 
specified layout and adds them to your activity.

• This is often referred to as inflating the layout.



– The user interface for an activity is provided by a hierarchy of 
views, which controls a particular space within the activity's 
window and can respond to user interaction.

– The most common way to define a user interface using views 
is with an XML layout file stored as part of your app's 
resources.

– Defining your layout in XML enables you to maintain the 
design of your user interface separately from the source code 
that defines the activity's behavior.

Implement a user interface of an 
Activity



• Declare the activity in the manifest
– Each activity in your app must be declared in the Android 

app manifest with the <activity> element, inside 
<application> .

– When you create a new project or add a new activity to 
your project in Android Studio, your manifest is created or 
updated to include skeleton activity declarations for each 
activity. Here's the declaration for the main activity.



• Add more activities to your project

– You can add new activities to your project in Android 
Studio with the File > New > Activity menu.

– Choose the activity template you want to use, or open the 
Gallery to see all the available templates.



• Android Studio provides these three things for 
each new activity in your app:
1. A Java file for the new activity with a skeleton class 

definition and onCreate() method. The new activity, like 
the main activity, is a subclass of AppCompatActivity.

2. An XML file containing the layout for the new activity. Note 
that the setContentView() method in the activity class 
inflates this new layout.

3. An additional <activity> element in the Android manifest 
that specifies the new activity. The second activity 
definition does not include any intent filters.





• Typically, one activity in an app is specified as the 
"main activity”, which is presented to the user 
when launching the application for the first time. 
Each activity can then start other activities in order 
to perform different actions.

• Each time a new activity starts, the previous activity 
is stopped, but the system preserves the activity in a 
stack (the "back stack").

• When the user is done with the current activity and 
presses the Back button, it is popped from the stack 
(and destroyed) and the previous activity resumes.



• When an activity is stopped because a new activity starts, the 
first activity is notified of that change with the activity's 
lifecycle callback methods.

• The Activity lifecycle is the set of states an activity can be in 
any particular instance of time, from when it is first created, 
to each time it is stopped or resumed, to when the system 
destroys it.



• The lifecycle is the set of states an activity can 
be in during its entire lifetime, from when it's 
created to when it's destroyed and the system 
reclaims its resources.

• As a user navigates between activities in your 
app (as well as into and out of your app), 
activities transition between different states in 
their lifecycles.



• Each stage in an activity's lifecycle has a 
corresponding callback method:
– onCreate(), onStart(), onPause(), and so on. 
– When an activity changes state, the associated 

callback method is invoked.
– You've already seen one of these methods: 

onCreate(). 
– By overriding any of the lifecycle callback methods in 

your Activity classes, you can change the activity's 
default behavior in response to user or system 
actions.



• The activity state can also change in response to 
device-configuration changes, for example when 
the user rotates the device from portrait to 
landscape. 

• After such changes the activity is destroyed and 
recreated in its default state, and the user might 
lose information that they've entered in the 
activity.

• To avoid confusing your users, it's important that 
you develop your app to prevent unexpected 
data loss, by saving all the changes.



Activity life Cycle diagram



Observing Activity Life Cycle
• In order to understand the Activity Life Cycle and the 

different states an activity can pass through, we can 
develop an app where we explicitly implement the 
relevant function for responsible for each state and 
display some message.

• Then we push the activity to change states by 
opening other apps and killing this app to observe 
the messages.

• These functions are
– onCreate(), onStart(), onResume(), onPause(), 

onStop(), onDestroy()



An example to understand activity states using Log Messages.



Example 1

• We implement one example where we display 
one Toast message in each activity life cycle 
function to observe the activity life cycle states of 
every function.

• These functions are implemented in Super class 
Activity Class. 

• We therefore implement these classes, and also 
execute the execute the original functions in the 
super class by writing the keyword super.

• E.g. super.onStart().







Example 2
This example, displays a Toast message as well as display a log 
message.





When the application is first started, onCreate(), 
onStart() and onResume() are executed.



Log messages which are written in each functions are 
also displayed in the log area.







When the app is restarted. 
onCreate() is not executed this time.



When the back button is pressed the app is 
destroyed.



When you click the app icon and 
restart the app.


	Slide Number 1
	Activity and Activity Life Cycle
	Activity
	Slide Number 4
	Slide Number 5
	Creating activities
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Implement a user interface of an Activity
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Activity life Cycle diagram
	Observing Activity Life Cycle
	An example to understand activity states using Log Messages.
	Example 1
	Slide Number 24
	Slide Number 25
	Example 2
	Slide Number 27
	When the application is first started, onCreate(), onStart() and onResume() are executed.
	Log messages which are written in each functions are also displayed in the log area.
	Slide Number 30
	Slide Number 31
	When the app is restarted. onCreate() is not executed this time.
	When the back button is pressed the app is destroyed.
	When you click the app icon and restart the app.

